This fraction ($1 \text{ g} \times 2$) was subjected to prep PC with solvent 1 and a band corresponding to that of hexasaccharides was extracted with H_2O . This extract was coned in vacuo and lyophilized to give a white powder (336 mg), which was applied to a carbon–Celite column (1:1; $5.5 \times 62 \text{ cm}$; pre-washed with HCl) which, after washing with H_2O (1.01.), was eluted successively with 13% (5.01.), 15% (5.01.) and 17% EtOH. Two fractions eluted with 17% EtOH of volumetric ranges 0.8-2.01. and 2.4-4.01, were pooled, desalted with Amberlite IR 120B and Amberlite IRA 410, coned and lyophilized to afford two white powders (95 and 110 mg). They were termed saccharide A and saccharide B in order of emergence.

Methylation and methanolysis. Methylation of the isolated saccharides was conducted by the method of Hakomori [11] as described in the previous paper [2], and the methylated saccharides were methanolysed by heating with 1.5% MeOH–HCl at 92° for 5 min. The reaction mixture was treated with Amberlite IR 120B and IRA 410 to remove HCl, and evapd in vacuo to dryness.

GLC of methanolysates. The methanolysates were dissolved in a small quantity of MeOH and injected onto a stainless steel column $(3 \, \text{mm} \times 1 \, \text{m})$ packed with $15 \, \%$ butane-1,4-diol succinate polyester on acid-washed Celite. The flow rate of carrier nitrogen gas was $40 \, \text{ml/min}$.

Hydrolysis. (1) Partial hydrolysis: the isolated saccharide

(20 mg) was dissolved in 0.025 M (COOH)₂ (5 ml) and partially hydrolysed by heating at 60° for 15 min. (2) Complete hydrolysis: the isolated saccharide (2 mg) was dissolved in 0.1 M HCl (0.5 ml) and hydrolysed by heating at 100° for 30 min. (3) Enzymatic hydrolysis: the isolated saccharide (2 mg) was hydrolysed by incubating with β -fructofuranosidase (0.2 ml; 0.4 mg of Sigma VI yeast β -fructofuranosidase in 0.2 ml of McIlvaine buffer, pH 5.5) at 30° for 15 hr.

REFERENCES

- 1. Shiomi, N. (1978) J. Fac. Agric. Hokkaido Univ. 58, 548.
- Shiomi, N., Yamada, J. and Izawa, M. (1976) Agric. Biol. Chem. 40, 567.
- Shiomi, N., Yamada, J. and Izawa, M. (1979) Agric. Biol. Chem. 43, 1375.
- 4. Morris, D. L. (1948) Science 107, 254.
- 5. Nelson, N. (1944) J. Biol. Chem. 153, 375.
- 6. Somogyi, M. (1945) J. Biol. Chem. 160, 69.
- 7. Somogyi, M. (1952) J. Biol. Chem. 195, 19.
- 8. Mukherjee, S. and Srivastava, H. C. (1952) Nature 169, 330.
- Trevelyan, W. E., Procter, D. P. and Harrison, J. S. (1950) Nature 166, 444.
- Shiomi, N., Yamada, J. and Izawa, M. (1979) Agric. Biol. Chem. 43, 2233.
- 11. Hakomori, S. (1964) J. Biochem. 55, 205.

Phytochemistry, Vol. 20, No. 11, pp. 2583-2584, 1981. Printed in Great Britain.

0031 -9422/81/112583-02 \$02.00/0 C 1981 Pergamon Press Ltd.

ANGELOYLCUMAMBRIN-B, AN ANTIMICROBIAL SESQUITERPENE LACTONE FROM CHRYSANTHEMUM ORNATUM VAR. SPONTANEUM

MITSUMASA HARUNA, MAKIKO KATO, KAZUO ITO, TOSHIAKI NIKAI.* HISAYOSHI SUGIHARA* and HIROYUKI MURATA†

Division of Natural Products Chemistry, Faculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468, Japan; *Division of Microbiology, Faculty of Pharmacy, Meijo University, Yagoto, Tempaku-ku, Nagoya 468, Japan

(Revised received 23 April 1981)

Key Word Index—Chrysanthemum ornatum var. spontaneum; Compositae; angeloylcumambrin-B; guaianolide; new sesquiterpene lactone; microbial growth-inhibitor.

Abstract—Angeloylcumambrin-B, a new antimicrobial guaianolide sesquiterpene lactone, was isolated from Chrysanthemum ornatum and the structure was determined by a combination of chemical and physical methods.

In the continuing research for physiologically active sesquiterpene lactones of the Compositae [1–3], we have examined the fresh whole herbs of *Chrysanthemum* ornatum Hemsl var. spontaneum (Makino) Kitam. [$\equiv C$. japonense (Makino) Nakai] gathered in November 1977 in Kagoshima, Japan. In the present paper, we describe the isolation and structure determination of a new antimicrobial guaianolide sesquiterpene lactone, angeloylcumambrin-B (1) (0.01%), together with the

previously known sesquiterpenoids, cumambrin-A (2) (0.05%) [4], cumambrin-B (3) (0.0075%) [4], and handelin (4) (0.075%) [5].

Angeloylcumambrin-B [(1); colourless oil; $[\alpha]_D^{20}$ + 100° (c = 0.2, MeOH); UV λ_{max} nm (ϵ): 211 (13 300); CD: $[\theta]_{223}$ + 13 200, $[\theta]_{260}$ – 2000] showed the MS molecular ion at m/z 346, in agreement with the molecular formula $C_{20}H_{26}O_5$. The presence of an α -methylene- γ -lactone moiety was confirmed by IR bands (CHCl₃) at 1770 and 1670 cm⁻¹ and also by the presence in the ¹H NMR spectrum of a characteristic pair of low-field doublets at δ 6.13 (1 H, J = 3.0 Hz) and δ 5.47 (1 H, J = 2.5 Hz) and in the ¹³C NMR spectrum of a triplet at

[†]Present address: Junicho, Ibuski 891-04, Japan.

 δ 121.1 (C-13). In the 1H NMR spectrum the signals attributable to methyl groups were observed. A singlet at δ 1.23 could be assigned to a methyl group attached to a carbon further substituted by an oxygen function. A broadened singlet was observed at δ 1.94, and it was assigned to a vinyl methyl group (C₄-Me). The presence of the *tert*-OH group was indicated by an IR band at 3650 cm $^{-1}$ and by resistance to the formation of an acetate. The 13 C NMR spectrum of 1 was similar to that of cumambrin-A (2) except for the presence of the ester sidechain and the absence of the acetate (cf. Table 1).

Table 1. ¹³C NMR spectral data (25.05 MHz) of lactones 1 and

Carbon No.	1	2
1	54.2 d	54.2 d
2	38.8 t	38.9 t
3	125.2 d	125.4 d
4	143.3 s	143.7 s
5	54.2 d	54.4 d
6	73.2 d	72.9 d
7	46.3 d	46.8 d
8	80.1 d	80.3 d
9	33.4 t	33.5 t
10	73.3 s	73.6 s
11	138.2 s	138.7 s
12	169.1 s	169.4 s
13	121.0 t	121.1 t
14	33.2 q	33.5 q
15	17.8 q	17.8 q
1'		166.8 s
2'	_	127.1 s
3'	_	139.7 d
4'		15.8 q
5'	_	20.6 q
ОСОМе	169.8 s	1000
$OCOCH_3$	21.3 q	_

*Run in CDCl₃ on a Jeol FX-100 spectrometer with Me₄Si as internal standard. s, singlet; d, doublet; t, triplet; q, quartet. Assignment established by single frequency off-resonance decoupling.

The nature of the ester side-chain of 1 was revealed by its IR band $(1718 \,\mathrm{cm}^{-1})$ and the ¹H NMR spectrum, which showed characteristic signals for the methyl $[\delta \, 2.03 \, (dd, \, 3 \,\mathrm{H}, \, J = 1.5, \, 7.0 \,\mathrm{Hz}, \, 4'\mathrm{-Me})$ and $\delta \, 1.92 \, (d, \, 3 \,\mathrm{H}, \, J = 1.5 \,\mathrm{Hz}, \, 5'\mathrm{-Me})$ and vinyl $[\delta \, 6.18 \, (m, \, 1 \,\mathrm{H}, \, 3'\mathrm{-H})]$ protons of an angeloyl residue.

From the above data, the new guaianolide appears to be the angeloyl derivative of cumambrin-B (3). This

assumption was confirmed as follows: alkaline hydrolysis of (1) with 10% KOH in dioxane followed by acetylation with Ac₂O-pyridine afforded the guaianolide, which was completely identical with cumambrin-A (2) by comparison of the IR and ¹H NMR spectra. Thus, the structure of the new guaianolide was established to be 1.

Angeloylcumambrin-B (1) showed antimicrobial activity against Escherichia coli, Staphylococcus pygenes, Mycobacterium smegmatis and Candida albicans at ca 500 ppm.

1
$$R = CO-C(Me) = CH-Me \text{ (angeloyl)}$$

2 $R = Ac$
3 $R = H$

Acknowledgement—This study was supported in part by a grant from the Ministry of Education, Japanese Government (Grant-in-aid, No. 577892).

REFERENCES

- 1. Ito, K., Sakakibara, Y., Haruna, M. and Lee, K.-H. (1979) Chem. Letters 1469.
- 2. Ito, K., Sakakibara, Y. and Haruna, M. (1979) Chem. Letters 1473
- Ito, K., Sakakibara, Y. and Haruna, M. (1979) Chem. Letters 1503.
- 4. Romo, J., Romo De Vivar, A. and Diaz, E. (1968) *Tetrahedron* **24.** 5625.
- Trasov, V. A., Abdullaev, N. D., Kasymov, S. Z., Sidyakin, G. P. and Yagudaev, M. R. (1976) Khim. Prir. Soedin. 6, 745; (1978) Chem. Abstr. 88, 7079h.